By Topic

Adaptive denoising of event-related functional magnetic resonance imaging data using spectral subtraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Y. M. Kadah ; Biomed. Eng. Dept., Cairo Univ., Giza, Egypt

A new adaptive signal-preserving technique for noise suppression in event-related functional magnetic resonance imaging (fMRI) data is proposed based on spectral subtraction. The proposed technique estimates a parametric model for the power spectrum of random noise from the acquired data based on the characteristics of the Rician statistical model. This model is subsequently used to estimate a noise-suppressed power spectrum for any given pixel time course by simple subtraction of power spectra. The new technique is tested using computer simulations and real data from event-related fMRI experiments. The results show the potential of the new technique in suppressing noise while preserving the other deterministic components in the signal. Moreover, we demonstrate that further analysis using principal component analysis and independent component analysis shows a significant improvement in both convergence and clarity of results when the new technique is used. Given its simple form, the new method does not change the statistical characteristics of the signal or cause correlated noise to be present in the processed signal. This suggests the value of the new technique as a useful preprocessing step for fMRI data analysis.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:51 ,  Issue: 11 )