By Topic

A theoretical model of the high-frequency arrhythmogenic depolarization signal following myocardial infarction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Kapela ; Dept. of Med. Phys., Univ. of Patras, Rion-Patras, Greece ; A. Bezerianos

Theoretical body-surface potentials were computed from single, branching and tortuous strands of Luo-Rudy dynamic model cells, representing different areas of an infarct scar. When action potential (AP) propagation either in longitudinal or transverse direction was slow (3-12 cm/s), the depolarization signals contained high-frequency (100-300 Hz) oscillations. The frequencies were related to macroscopic propagation velocity and strand architecture by simple formulas. Next, we extended a mathematical model of the QRS-complex presented in our earlier work to simulate unstable activation wavefront. It combines signals from different strands with small timing fluctuations relative to a large repetitive QRS-like waveform and can account for dynamic changes of real arrhythmogenic micropotentials. Variance spectrum of wavelet coefficients calculated from the composite QRS-complex contained the high frequencies of the individual abnormal signals. We conclude that slow AP propagation through fibrotic regions after myocardial infarction is a source of high-frequency arrhythmogenic components that increase beat-to-beat variability of the QRS, and wavelet variance parameters can be used for ventricular tachycardia risk assessment.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:51 ,  Issue: 11 )