By Topic

A mathematical model for breast cancer lesion estimation: electrical impedance technique using TS2000 commercial system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jin Keun Seo ; Dept. of Math., Yonsei Univ., Seoul, South Korea ; Ohin Kwon ; Ammari, H. ; Eung Je Woo

We present a mathematical model to analyze transadmittance data for the detection of breast cancer using TransScan TS2000 commercial system. The model was constructed based on the assumption that a lesion exists near the surface of a breast region. The breast region that is considered as a background is assumed to be homogeneous at least near the surface where we attach a planar array of electrodes. Based on the model, we developed a lesion estimation algorithm utilizing single- or multifrequency transadmittance data. The approximate ratio of two conductivity values for the lesion and background needs to be known to estimate the size of the lesion even though the location estimate does not require this ratio. From the results of numerical simulations with added noise, we suggest better ways of interpreting TS2000 transadmittance images for the detection of breast cancer with improved accuracy. Since this study provides a rigorous mathematical modeling of TS2000 commercial system, it will be possible to apply the technique to lesion estimation problems based on more realistic models of breast regions in future studies.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:51 ,  Issue: 11 )