Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

NPOESS aircraft sounder testbed-microwave: observations of clouds and precipitation at 54, 118, 183, and 425 GHz

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Leslie, R.V. ; Lincoln Lab., Massachusetts Inst. of Technol., Cambridge, MA, USA ; Staelin, D.H.

The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Aircraft Sounder Testbed-Microwave (NAST-M) includes spectrometers operating near the oxygen lines at 50-57, 118.75, and 424.76 GHz, and a spectrometer centered on the water vapor absorption line at 183.31 GHz. All four of the spectrometers' antenna horns are collocated, have 3-dB (full-width at half-maximum) beamwidths of 7.5°, and are directed at a single mirror that scans cross-track beneath the aircraft with a swath up to 100-km wide. The first part of the paper describes the instrumentation and calibration for the newly installed spectrometers at 183.31 and 424.76 GHz. The second part demonstrates the potential performance of NAST-M, by presenting radiance images and precipitation rate and cell-top retrievals obtained during overflights of isolated convective storm cells, and by comparing these results with coincident visible images. NAST-M radiances are also compared with visible, infrared, and radar images. The nonlinear retrieval method was trained with a simple precipitation model. The data were obtained during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE 2002) and the Pacific THORpex (THe Observing-system Research and predictability experiment) Observing System Test (PTOST 2003).

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:42 ,  Issue: 10 )