Cart (Loading....) | Create Account
Close category search window
 

Intercomparison of inversion algorithms to retrieve rain rate from SSM/I by using an extended validation set over the Mediterranean area

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Pierdicca, N. ; Dept. of Electron. Eng., Univ. of Rome "La Sapienza", Roma, Italy ; Pulvirenti, L. ; Marzano, F.S. ; Ciotti, P.
more authors

The capability of some inversion algorithms to estimate surface rain rate at the midlatitude basin scale from the Special Sensor Microwave Imager (SSM/I) data is analyzed. For this purpose, an extended database has been derived from coincident SSM/I images and half-hourly rain rate data obtained from a rain gauge network, placed along the Tiber River basin in Central Italy, during nine years (from 1992 to 2000). The database has been divided in a training set, to calibrate the empirical algorithms, and in a validation one, to compare the results of the considered techniques. The proposed retrieval methods are based on both empirical and physical approaches. Among the empirical methods, a regression, an artificial feedforward neural network, and a Bayesian maximum a posteriori (MAP) inversion have been considered. Three algorithms available in the literature are also included as benchmarks. As physical algorithms, the MAP method and the minimum mean square estimator have been used. Moreover, in order to test the behavior of the algorithms with different kinds of precipitation, a classification of rainy events, based on some statistical parameters derived from rain gauge measurements, has been performed. From this classification, an attempt to identify the type of event from radiometric data has been carried out. The purposes of this paper are to determine whether the use of an extended training set, referred to a limited geographical area, can improve the SSM/I skill in rain detection and estimation and, mainly, to confirm the validity of the physical approach adopted in previous works. It will be shown that, among all the estimators, the neural network presents the best performances and that the physical techniques provide results only slightly worse than those given by empirical methods, but with the well-known advantage of an easy application to different geographical zones and different sensors.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:42 ,  Issue: 10 )

Date of Publication:

Oct. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.