By Topic

An efficient Re-indexing algorithm for color-mapped images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Battiato, S. ; Dipt. di Matematica e Informatica, Univ. of Catania, Italy ; Gallo, G. ; Impoco, G. ; Stanco, F.

The efficiency of lossless compression algorithms for fixed-palette images (indexed images) may change if a different indexing scheme is adopted. Many lossless compression algorithms adopt a differential-predictive approach. Hence, if the spatial distribution of the indexes over the image is smooth, greater compression ratios may be obtained. Because of this, finding an indexing scheme that realizes such a smooth distribution is a relevant issue. Obtaining an optimal re-indexing scheme is suspected to be a hard problem and only approximate solutions have been provided in literature. In this paper, we restate the re-indexing problem as a graph optimization problem: an optimal re-indexing corresponds to the heaviest Hamiltonian path in a weighted graph. It follows that any algorithm which finds a good approximate solution to this graph-theoretical problem also provides a good re-indexing. We propose a simple and easy-to-implement approximation algorithm to find such a path. The proposed technique compares favorably with most of the algorithms proposed in literature, both in terms of computational complexity and of compression ratio.

Published in:

Image Processing, IEEE Transactions on  (Volume:13 ,  Issue: 11 )