By Topic

Speaker adaptation using an eigenphone basis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
P. Kenny ; Centre de Recherche Informatique de Montreal, Que., Canada ; G. Boulianne ; P. Ouellet ; P. Dumouchel

We describe a new method of estimating speaker-dependent hidden Markov models for speakers in a closed population. Our method differs from previous approaches in that it is based on an explicit model of the correlations between all of the speakers in the population, the idea being that if there is not enough data to estimate a Gaussian mean vector for a given speaker then data from other speakers can be used provided that we know how the speakers are correlated with each other. We explain how to estimate inter-speaker correlations using a Kullback-Leibler divergence minimization technique which can be applied to the problem of estimating the parameters of all of the hyperdistributions that are currently used in Bayesian speaker adaptation.

Published in:

IEEE Transactions on Speech and Audio Processing  (Volume:12 ,  Issue: 6 )