By Topic

Probabilistic fault localization in communication systems using belief networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Steinder ; Dept. of Comput. & Inf. Sci., Univ. of Delaware, Newark, DE, USA ; A. S. Sethi

We apply Bayesian reasoning techniques to perform fault localization in complex communication systems while using dynamic, ambiguous, uncertain, or incorrect information about the system structure and state. We introduce adaptations of two Bayesian reasoning techniques for polytrees, iterative belief updating, and iterative most probable explanation. We show that these approximate schemes can be applied to belief networks of arbitrary shape and overcome the inherent exponential complexity associated with exact Bayesian reasoning. We show through simulation that our approximate schemes are almost optimally accurate, can identify multiple simultaneous faults in an event driven manner, and incorporate both positive and negative information into the reasoning process. We show that fault localization through iterative belief updating is resilient to noise in the observed symptoms and prove that Bayesian reasoning can now be used in practice to provide effective fault localization.

Published in:

IEEE/ACM Transactions on Networking  (Volume:12 ,  Issue: 5 )