Cart (Loading....) | Create Account
Close category search window
 

DCTC: dynamic convoy tree-based collaboration for target tracking in sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wensheng Zhang ; Dept. of Comput. Sci. & Eng., Pennsylvania State Univ., University Park, PA, USA ; Guohong Cao

Most existing work on sensor networks concentrates on finding efficient ways to forward data from the information source to the data centers, and not much work has been done on collecting local data and generating the data report. This paper studies this issue by proposing techniques to detect and track a mobile target. We introduce the concept of dynamic convoy tree-based collaboration, and formalize it as a multiple objective optimization problem which needs to find a convoy tree sequence with high tree coverage and low energy consumption. We propose an optimal solution which achieves 100% coverage and minimizes the energy consumption under certain ideal situations. Considering the real constraints of a sensor network, we propose several practical implementations: the conservative scheme and the prediction-based scheme for tree expansion and pruning; the sequential and the localized reconfiguration schemes for tree reconfiguration. Extensive experiments are conducted to compare the practical implementations and the optimal solution. The results show that the prediction-based scheme outperforms the conservative scheme and it can achieve similar coverage and energy consumption to the optimal solution. The experiments also show that the localized reconfiguration scheme outperforms the sequential reconfiguration scheme when the node density is high, and the trend is reversed when the node density is low.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:3 ,  Issue: 5 )

Date of Publication:

Sept. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.