By Topic

Recognition by symmetry derivatives and the generalized structure tensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. Bigun ; Halmstad Univ., Sweden ; T. Bigun ; K. Nilsson

We suggest a set of complex differential operators that can be used to produce and filter dense orientation (tensor) fields for feature extraction, matching, and pattern recognition. We present results on the invariance properties of these operators, that we call symmetry derivatives. These show that, in contrast to ordinary derivatives, all orders of symmetry derivatives of Gaussians yield a remarkable invariance: they are obtained by replacing the original differential polynomial with the same polynomial, but using ordinary coordinates x and y corresponding to partial derivatives. Moreover, the symmetry derivatives of Gaussians are closed under the convolution operator and they are invariant to the Fourier transform. The equivalent of the structure tensor, representing and extracting orientations of curve patterns, had previously been shown to hold in harmonic coordinates in a nearly identical manner. As a result, positions, orientations, and certainties of intricate patterns, e.g., spirals, crosses, parabolic shapes, can be modeled by use of symmetry derivatives of Gaussians with greater analytical precision as well as computational efficiency. Since Gaussians and their derivatives are utilized extensively in image processing, the revealed properties have practical consequences for local orientation based feature extraction. The usefulness of these results is demonstrated by two applications: 1) tracking cross markers in long image sequences from vehicle crash tests and 2) alignment of noisy fingerprints.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:26 ,  Issue: 12 )