By Topic

Automatic target recognition using a neocognitron

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

The use of a neocognitron in an automatic target recognition (ATR) system is described. An image is acquired, edge detected, segmented, and centered on a log-spiral grid using subsystems not discussed in the paper. A conformal transformation is used to map the log-spiral grid to a computation plane in which rotations and scalings are transformed to displacements along the vertical and horizontal axes, respectively. Since the neocognitron can recognize shifted objects, the use of log-spiral images by the neocognitron enables the system to recognize scaled, rotated, and translated objects. Two modifications to prior neocognitron implementations are described. A new weight reinforcement method is introduced which solves a significant training problem for the neocognitron. A method of reducing training time is also introduced which specifies the initial layer of weights in the network. All subsequent layers are trained using unsupervised learning. Simulation results using 32×32 and 64×64 intercontinental ballistic missile (ICBM) images are presented

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:4 ,  Issue: 2 )