System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Characterization of NAVSTAR GPS and GLONASS on-board clocks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Daly, P. ; Dept. of Electr. & Electron. Eng., Leeds Univ., UK ; Kitching, I.D.

Investigation into navigation satellite on board clock frequency references and performance are reported. The focus is on the stability of the clocks aboard the NAVSTAR GPS (Global Positioning System) and GLONASS satellites as well as those used by their respective maser control stations and associated time scales. Allan-variance techniques have been applied to determine the long-term time-domain behavior of satellite clocks in an attempt to identify different regions of power spectral density. Coupled with analysis of relative-frequency drift over a period of many weeks, this behavior allows the type of satellite onboard standard to be tentatively identified. The known nature of the GPS clocks has shown that the different types of clocks aboard the satellites (crystal, rubidium, and cesium) are distinguishable given a sufficient sample time. The same approach has been applied to the GLONASS satellites, and a comparison of the results obtained from GPS has allowed conjecture on the type of clock used by the GLONASS satellites. It appears that GLONASS has used clocks of the quality of rubidium atomic oscillators since at least 1986, and that the quality and performance of onboard standards have increased steadily with time. Some current satellites perform well enough in terms of frequency drift, flicker FM noise floor, and long-term stability to compare favorably with the cesium beam standards carried on NAVSTAR GPS satellites launched in 1983-84.<>

Published in:

Aerospace and Electronic Systems Magazine, IEEE  (Volume:5 ,  Issue: 7 )