Cart (Loading....) | Create Account
Close category search window
 

SiGe heterojunction bipolar transistors and circuits toward terahertz communication applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Jae-Sung Rieh ; IBM Semicond. R&D Center, Hopewell Junction, NY, USA ; Jagannathan, B. ; Greenberg, D.R. ; Meghelli, M.
more authors

The relatively less exploited terahertz band possesses great potential for a variety of important applications, including communication applications that would benefit from the enormous bandwidth within the terahertz spectrum. This paper overviews an approach toward terahertz applications based on SiGe heterojunction bipolar transistor (HBT) technology, focusing on broad-band communication applications. The design, characteristics, and reliability of SiGe HBTs exhibiting record fT of 375 GHz and associated fmax of 210 GHz are presented. The impact of device optimization on noise characteristics is described for both low-frequency and broad-band noise. Circuit implementations of SiGe technologies are demonstrated with selected circuit blocks for broad-band communication systems, including a 3.9-ps emitter coupled logic ring oscillator, a 100-GHz frequency divider, 40-GHz voltage-controlled oscillator, and a 70-Gb/s 4:1 multiplexer. With no visible limitation for further enhancement of device speed at hand, the march toward terahertz band with Si-based technology will continue for the foreseeable future.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:52 ,  Issue: 10 )

Date of Publication:

Oct. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.