By Topic

Improved conditioning of finite element matrices using new high-order interpolatory bases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rieben, R.N. ; Dept. of Appl. Sci., California Univ., Davis, CA, USA ; White, D.A. ; Rodrigue, G.H.

The condition number of finite element matrices constructed from interpolatory bases will grow as the polynomial degree of the basis functions is increased. The worst case scenario for this growth rate is exponential and in this paper we demonstrate through computational example that the traditional set of uniformly distributed interpolation points yields this behavior. We propose a set of nonuniform interpolation points which yield a much improved polynomial growth rate of condition number. These points can be used to construct several types of popular hexahedral basis functions including the 0-form (standard Lagrangian), 1-form (Curl conforming), and 2-form (Divergence conforming) varieties. We demonstrate through computational example the benefits of using these new interpolatory bases in finite element solutions to Maxwell's equations in both the frequency and time domain.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:52 ,  Issue: 10 )