By Topic

A hybrid time-domain technique that combines the finite element, finite difference and method of moment techniques to solve complex electromagnetic problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Monorchio, A. ; Dept. of Inf. Eng., Univ. of Pisa, Italy ; Bretones, A.R. ; Mittra, R. ; Manara, G.
more authors

This paper describes a hybrid technique directly operating in time domain that combines the finite element time domain (FETD), the finite-difference time-domain (FDTD) and the integral-equation-based method of moments in the time domain (MoMTD) techniques to analyze complex electromagnetic problems involving thin-wire antennas radiating in the presence of inhomogeneous dielectric bodies whose shape can be arbitrary. The method brings together the ability of the FDTD scheme to deal with arbitrary material properties, the versatility of the FETD to accurately model curved geometries, and that of the MoM to analyze thin-wire structures. Working in the time domain provides wide-band information from a single execution of the marching-on-in-time procedure and simplifies the interfacing of the FE and MoM methods with the FDTD, an approach specifically designed for time domain analysis. Numerical results that validate the hybrid method and show its capabilities are presented in the paper.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:52 ,  Issue: 10 )