By Topic

A fast multipole method for layered media based on the application of perfectly matched layers - the 2-D case

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
D. Vande Ginste ; Inf. Technol. Dept., Ghent Univ., Belgium ; H. Rogier ; F. Olyslager ; D. De Zutter

An efficient fast multipole method (FMM) formalism to model scattering from two-dimensional (2-D) microstrip structures is presented. The technique relies on a mixed potential integral equation (MPIE) formulation and a series expression for the Green functions, based on the use of perfectly matched layers (PML). In this way, a new FMM algorithm is developed to evaluate matrix-vector multiplications arising in the iterative solution of the scattering problem. Novel iteration schemes have been implemented and a computational complexity of order O(N) is achieved. The theory is validated by means of several illustrative, numerical examples. This paper aims at elucidating the PML-FMM-MPIE concept and can be seen as a first step toward a PML based multilevel fast multipole algorithm (MLFMA) for 3-D microstrip structures embedded in layered media.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:52 ,  Issue: 10 )