Cart (Loading....) | Create Account
Close category search window

Exact calculation of expected waiting times for group elevator control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nikovski, D. ; Mitsubishi Electr. Res. Labs., Cambridge, MA, USA ; Brand, M.

We present an efficient algorithm for exact calculation and minimization of expected waiting times of all passengers using a bank of elevators. The dynamics of the system are represented by a discrete-state Markov chain embedded in the continuous phase-space diagram of a moving elevator car. The chain is evaluated efficiently using dynamic programming to compute measures of future system performance such as expected waiting time, properly averaged over all possible future scenarios. A linear-time elevator group controller based on this method significantly outperforms benchmark algorithms and is completely within the computational capabilities of contemporary elevator bank controllers.

Published in:

Automatic Control, IEEE Transactions on  (Volume:49 ,  Issue: 10 )

Date of Publication:

Oct. 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.