By Topic

A reorganized innovation approach to linear estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Huanshui Zhang ; Inf. & Control Res. Center, HIT Campus Shenzhen Univ. Town, China ; Lihua Xie ; Huanshui Zhang ; Yeng Chai Soh

This note will address a linear minimum variance estimation of discrete-time systems with instantaneous and delayed measurements. Although the problem may be approached via system augmentation and standard Kalman filtering, the computation of filter may be expensive when the dimension of the system is high and the measurement lag is significant. In this note, a new tool, termed as reorganized innovation sequence, is presented for deriving the optimal filter. The optimal filter is given by two Riccati difference equations (RDEs) with the same dimension as that of the original system. The approach is shown to induce saving of computational cost as compared to the system augmentation approach, especially when the delay is large. Further, it can be extended to solving the more complicated H fixed-lag smoothing in Krein space.

Published in:

Automatic Control, IEEE Transactions on  (Volume:49 ,  Issue: 10 )