By Topic

Uplink power adjustment in wireless communication systems: a stochastic control analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Minyi Huang ; Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, Que., Canada ; P. E. Caines ; R. P. Malhame

This paper considers mobile to base station power control for lognormal fading channels in wireless communication systems within a centralized information stochastic optimal control framework. Under a bounded power rate of change constraint, the stochastic control problem and its associated Hamilton-Jacobi-Bellman (HJB) equation are analyzed by the viscosity solution method; then the degenerate HJB equation is perturbed to admit a classical solution and a suboptimal control law is designed based on the perturbed HJB equation. When a quadratic type cost is used without a bound constraint on the control, the value function is a classical solution to the degenerate HJB equation and the feedback control is affine in the system power. In addition, in this case we develop approximate, but highly scalable, solutions to the HJB equation in terms of a local polynomial expansion of the exact solution. When the channel parameters are not known a priori, one can obtain on-line estimates of the parameters and get adaptive versions of the control laws. In numerical experiments with both of the above cost functions, the following phenomenon is observed: whenever the users have different initial conditions, there is an initial convergence of the power levels to a common level and then subsequent approximately equal behavior which converges toward a stochastically varying optimum.

Published in:

IEEE Transactions on Automatic Control  (Volume:49 ,  Issue: 10 )