By Topic

Nonthermal GSM microwaves affect chromatin conformation in human lymphocytes similar to heat shock

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
R. Sarimov ; Dept. of Genetics, Stockholm Univ., Sweden ; L. O. G. Malmgren ; E. Markova ; B. R. R. Persson
more authors

Here we investigated whether microwaves (MWs) of Global System for Mobile Communication (GSM) induce changes in chromatin conformation in human lymphocytes. Effects of MWs were studied at different frequencies in the range of 895-915 MHz in experiments with lymphocytes from seven healthy persons. Exposure was performed in transverse electromagnetic transmission line cell (TEM-cell) using a GSM test-mobile phone. All standard modulations included 2 W output power in the pulses, specific absorbed rate (SAR) being 5.4 mW/kg. Changes in chromatin conformation, which are indicative of stress response and genotoxic effects, were measured by the method of anomalous viscosity time dependencies (AVTD). Heat shock and treatment with the genotoxic agent camptothecin, were used as positive controls. 30-min exposure to MWs at 900 and 905 MHz resulted in statistically significant condensation of chromatin in lymphocytes from 1 of 3 tested donors. This condensation was similar to effects of heat shock within the temperature window of 40°C-44°C. Analysis of pooled data from all donors showed statistically significant effect of 30-min exposure to MWs. Stronger effects of MWs was found following 1-h exposure. In replicated experiments, cells from four out of five donors responded to 905 MHz. Responses to 915 MHz were observed in cells from 1 out of 5 donors, p<0.002. Dependent on donor, condensation, 3 donors, or decondensation, 1 donor, of chromatin was found in response to 1-h exposure. Analysis of pooled data from all donors showed statistically significant effect of 1-h exposure to MWs. In cells from one donor, this effect was frequency-dependent (p<0.01). Effects of MWs correlated statistically significantly with effects of heat shock and initial state of chromatin before exposure. MWs at 895 and 915 MHz affected chromatin conformation in transformed lymphocytes. The conclusion-GSM microwaves under specific conditions of exposure affected human lymphocytes similar to stress response. The data suggested that the MW effects differ at various GSM frequencies and vary between donors.

Published in:

IEEE Transactions on Plasma Science  (Volume:32 ,  Issue: 4 )