By Topic

Modified transfer matrix formulation for bragg grating strain sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Prabhugoud, M. ; Dept. of Mech. & Aerosp. Eng., North Carolina State Univ., Raleigh, NC, USA ; Peters, K.

This paper presents a formulation for the application of the transfer matrix method to Bragg grating strain sensors. A modified T-matrix representation is detailed for the sensor problem based on an effective period derived from the coupling coefficients. This modified T-matrix formulation is shown to converge to the coupled-mode equations solution for a large number of grating segments, even in the presence of significant strain gradients. Several numerical examples are presented to demonstrate the importance of inclusion of the strain gradient in the calculation. In addition, the current formulation is validated by application to previously published experimental data.

Published in:

Lightwave Technology, Journal of  (Volume:22 ,  Issue: 10 )