By Topic

High-resolution long-array thermal ink jet printhead fabricated by anisotropic wet etching and deep Si RIE

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
R. Nayve ; IJ Technol. Dev. Center, Fuji Xerox Co. Ltd., Kanagawa, Japan ; M. Fujii ; A. Fukugawa ; T. Takeuchi
more authors

This paper describes the fabrication and characterization of a thermal ink jet (TIJ) printhead suitable for high speed and high-quality printing. The printhead has been fabricated by dicing the bonded wafer, which consists of a bubble generating heater plate and a Si channel plate. The Si channel plate consists of an ink chamber and an ink inlet formed by KOH etching, and a nozzle formed by inductively couple plasma reactive ion etching (ICP RIE). The nozzle formed by RIE has squeezed structures, which contribute to high-energy efficiency of drop ejector and, therefore, successful ejection of small ink drop. The nozzle also has a dome-like structure called channel pit, which contributes to high jetting frequency and high-energy efficiency. These two wafers are directly bonded using electrostatic bonding of full-cured polyimide to Si. The adhesive-less bonding provided an ideal shaped small nozzle orifice. Use of the same material (Si substrate) in heater plate and channel plate enables the fabrication of high precision long printhead because no displacement and delamination occur, which are caused by the difference in thermal expansion coefficient between the plates. With these technologies, we have fabricated a 1" long printhead with 832 nozzles having 800 dots per inch (dpi) resolution and a 4 pl. ink drop volume.

Published in:

Journal of Microelectromechanical Systems  (Volume:13 ,  Issue: 5 )