By Topic

Atmospherically resistant vegetation index (ARVI) for EOS-MODIS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kaufman, Y.J. ; NASA/ Goddard Space Flight Centre, Greenbelt, MD, USA ; Tanre, D.

An atmospherically resistant vegetation index (ARVI) is proposed and developed for remote sensing of vegetation from the Earth Observing System (EOS) MODIS sensor. The same index can be used for remote sensing from Landsat TM and the EOS-HIRIS sensor. The index takes advantage of the presence of the blue channel (0.47.±0.01 μm) in the MODIS sensor, in addition to the red (0.66±0.025 μm) and the near-IR (0.865±0.02 μm) channels that compose the present normalized difference vegetation index (NDVI). The resistance of the ARVI to atmospheric effects (in comparison to the NDVI) is accomplished by a self-correction process for the atmospheric effect on the red channel, using the difference in the radiance between the blue and the red channels to correct the radiance in the red channel. Simulations using radiative transfer computations on arithmetic and natural surface spectra, for various atmospheric conditions, show that ARVI has a similar dynamic range to the NDVI, but is, on average, four times less sensitive to atmospheric effects than the NDVI

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:30 ,  Issue: 2 )