Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Adaptive determination of filter scales for edge detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hong Jeong ; Dept. of Electr. Eng., Pohang Inst. of Sci. & Technol., South Korea ; Kim, C.I.

The authors suggest a regularization method for determining scales for edge detection adaptively for each site in the image plane. Specifically, they extend the optimal filter concept of T. Poggio et al. (1984) and the scale-space concept of A. Witkin (1983) to an adaptive scale parameter. To avoid an ill-posed feature synthesis problem, the scheme automatically finds optimal scales adaptively for each pixel before detecting final edge maps. The authors introduce an energy function defined as a functional over continuous scale space. Natural constraints for edge detection are incorporated into the energy function. To obtain a set of optimal scales that can minimize the energy function, a parallel relaxation algorithm is introduced. Experiments for synthetic and natural scenes show the advantages of the algorithm. In particular, it is shown that this system can detect both step and diffuse edges while drastically filtering out the random noise

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:14 ,  Issue: 5 )