By Topic

Unsupervised texture segmentation using Markov random field models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Manjunath, B.S. ; Dept. of Electr. Eng.-Syst., Univ. of Southern California, Los Angeles, CA, USA ; Chellappa, R.

The problem of unsupervised segmentation of textured images is considered. The only explicit assumption made is that the intensity data can be modeled by a Gauss Markov random field (GMRF). The image is divided into a number of nonoverlapping regions and the GMRF parameters are computed from each of these regions. A simple clustering method is used to merge these regions. The parameters of the model estimated from the clustered segments are then used in two different schemes, one being all approximation to the maximum a posterior estimate of the labels and the other minimizing the percentage misclassification error. The proposed approach is contrasted with the algorithm of S. Lakshamanan and H. Derin (1989), which uses a simultaneous parameter estimation and segmentation scheme. The results of the adaptive segmentation algorithm of Lakshamanan and Derin are compared with a simple nearest-neighbor classification scheme to show that if enough information is available, simple techniques could be used as alternatives to computationally expensive schemes

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:13 ,  Issue: 5 )