Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Image filtering using multiresolution representations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Surendra Ranganath ; Philips Lab., Briarcliff Manor, NY, USA

It is shown how multiresolution representations can be used for filter design and implementation. These representations provide a coarse frequency decomposition of the image, which forms the basis for two filtering techniques. The first method, based on image pyramids, is used for approximating the convolution of an image with a given mask. In this technique, a filter is designed using a least-squares procedure based on filters synthesized from the basic pyramid equivalent filters. The second method is an adaptive noise reduction algorithm. An optimally filtered image is synthesized from the multiresolution levels, which in this case are maintained at the original sampling density. Individual pixels of the image representation are linearly combined under a minimum mean square error criterion. This uses a local signal-to-noise ratio estimate to provide the best compromise between noise removal and resolution loss

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:13 ,  Issue: 5 )