By Topic

Charge state and residence time of metal ions generated from a microsecond vacuum arc

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tsuruta, K. ; Dept. of Electr. & Electron. Eng., Ibaraki Univ., Japan ; Suzuki, K. ; Kunitsu, K.

Metal ions generated from a microsecond vacuum arc were measured using a time-of-flight (TOF) method. A point-plane vacuum gap was fired by an impulse voltage to generate metal ions. The risetime and time constant for the decay of the arc current were 0.1 and 4.5 μs, respectively. TOF ion currents were measured for variable ion extraction times after the arc ignition. At a lead cathode, Pb+ and Pb ++ ions were detected for ion extraction times less than 45 μs. The average charge-state fractions of the Pb+ and Pb ++ ions were 91 and 9%, respectively. At a copper cathode, Cu +, Cu++, and Cu+++ ions were detected for ion-extraction times less than 12.5 μs, and the average charge-state fractions were 42, 41, and 17%, respectively. The residence times of the generated lead and copper ions were also discussed

Published in:

Plasma Science, IEEE Transactions on  (Volume:20 ,  Issue: 2 )