Cart (Loading....) | Create Account
Close category search window
 

A modeling approach for burn scar assessment using natural features and elastic property

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yong Zhang ; Dept. of Comput. Sci. & Eng., Univ. of South Florida, Tampa, FL, USA ; Goldgof, D.B. ; Sarkar, S. ; Tsap, Leonid V.

A modeling approach is presented for quantitative burn scar assessment. Emphases are given to: 1) constructing a finite-element model from natural image features with an adaptive mesh and 2) quantifying the Young's modulus of scars using the finite-element model and regularization method. A set of natural point features is extracted from the images of burn patients. A Delaunay triangle mesh is then generated that adapts to the point features. A three-dimensional finite-element model is built on top of the mesh with the aid of range images providing the depth information. The Young's modulus of scars is quantified with a simplified regularization functional, assuming that the knowledge of the scar's geometry is available. The consistency between the relative elasticity index and the physician's rating based on the Vancouver scale (a relative scale used to rate burn scars) indicates that the proposed modeling approach has high potential for image-based quantitative burn scar assessment.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:23 ,  Issue: 10 )

Date of Publication:

Oct. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.