By Topic

Predictive cardiac motion modeling and correction with partial least squares regression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Ablitt, N.A. ; Dept. of Comput., Imperial Coll. London, UK ; Jianxin Gao ; Keegan, J. ; Stegger, L.
more authors

Respiratory-induced cardiac deformation is a major problem for high-resolution cardiac imaging. This paper presents a new technique for predictive cardiac motion modeling and correction, which uses partial least squares regression to extract intrinsic relationships between three-dimensional (3-D) cardiac deformation due to respiration and multiple one-dimensional real-time measurable surface intensity traces at chest or abdomen. Despite the fact that these surface intensity traces can be strongly coupled with each other but poorly correlated with respiratory-induced cardiac deformation, we demonstrate how they can be used to accurately predict cardiac motion through the extraction of latent variables of both the input and output of the model. The proposed method allows cross-modality reconstruction of patient specific models for dense motion field prediction, which after initial modeling can be used for real-time prospective motion tracking or correction. Detailed numerical issues related to the technique are discussed and the effectiveness of the motion and deformation modeling is validated with 3-D magnetic resonance data sets acquired from ten asymptomatic subjects covering the entire respiratory range.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:23 ,  Issue: 10 )