By Topic

Quantifying 3-D vascular structures in MRA images using hybrid PDE and geometric deformable models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jian Chen ; Washington Univ. Sch. of Med., St. Louis, MO, USA ; A. A. Amini

The aim of this paper is to present a hybrid approach to accurate quantification of vascular structures from magnetic resonance angiography (MRA) images using level set methods and deformable geometric models constructed with 3-D Delaunay triangulation. Multiple scale filtering based on the analysis of local intensity structure using the Hessian matrix is used to effectively enhance vessel structures with various diameters. The level set method is then applied to automatically segment vessels enhanced by the filtering with a speed function derived from enhanced MRA images. Since the goal of this paper is to obtain highly accurate vessel borders, suitable for use in fluid flow simulations, in a subsequent step, the vessel surface determined by the level set method is triangulated using 3-D Delaunay triangulation and the resulting surface is used as a parametric deformable model. Energy minimization is then performed within a variational setting with a first-order internal energy; the external energy is derived from 3-D image gradients. Using the proposed method, vessels are accurately segmented from MRA data.

Published in:

IEEE Transactions on Medical Imaging  (Volume:23 ,  Issue: 10 )