System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

A method for modeling noise in medical images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gravel, P. ; Centre Hospitalier de l''Univ. de Montreal, Que., Canada ; Beaudoin, G. ; de Guise, J.A.

We have developed a method to study the statistical properties of the noise found in various medical images. The method is specifically designed for types of noise with uncorrelated fluctuations. Such signal fluctuations generally originate in the physical processes of imaging rather than in the tissue textures. Various types of noise (e.g., photon, electronics, and quantization) often contribute to degrade medical images; the overall noise is generally assumed to be additive with a zero-mean, constant-variance Gaussian distribution. However, statistical analysis suggests that the noise variance could be better modeled by a nonlinear function of the image intensity depending on external parameters related to the image acquisition protocol. We present a method to extract the relationship between an image intensity and the noise variance and to evaluate the corresponding parameters. The method was applied successfully to magnetic resonance images with different acquisition sequences and to several types of X-ray images.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:23 ,  Issue: 10 )