By Topic

Wavelet-based fuzzy reasoning approach to power-quality disturbance recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhu, T.X. ; Electr. Eng. Dept., Ngee Ann Polytech., Singapore ; Tso, S.K. ; Lo, K.L.

This paper proposes a wavelet-based extended fuzzy reasoning approach to power-quality disturbance recognition and identification. To extract power-quality disturbance features, the energy distribution of the wavelet part at each decomposition level is introduced and its calculation mathematically established. Based on these features, rule bases are generated for extended fuzzy reasoning. The power-quality disturbance features are finally mapped into a real number, in terms of which different power-quality disturbance waveforms are classified. Numerical results obtained from a large database show that the disturbance waveforms such as high- and low-frequency capacitor switching, voltage sag, impulsive transient, transformer energizing, and perfect sine waveform can all be correctly identified. The effect of the amplitude and frequency content of power-quality disturbance on the energy distribution patterns and the effect of noise on classification accuracy are also discussed in the paper.

Published in:

Power Delivery, IEEE Transactions on  (Volume:19 ,  Issue: 4 )