By Topic

HARP: a practical projected clustering algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
K. Y. Yip ; Dept. of Comput. Sci. & Inf. Syst., Hong Kong Univ., China ; D. W. Cheung ; M. K. Ng

In high-dimensional data, clusters can exist in subspaces that hide themselves from traditional clustering methods. A number of algorithms have been proposed to identify such projected clusters, but most of them rely on some user parameters to guide the clustering process. The clustering accuracy can be seriously degraded if incorrect values are used. Unfortunately, in real situations, it is rarely possible for users to supply the parameter values accurately, which causes practical difficulties in applying these algorithms to real data. In this paper, we analyze the major challenges of projected clustering and suggest why these algorithms need to depend heavily on user parameters. Based on the analysis, we propose a new algorithm that exploits the clustering status to adjust the internal thresholds dynamically without the assistance of user parameters. According to the results of extensive experiments on real and synthetic data, the new method has excellent accuracy and usability. It outperformed the other algorithms even when correct parameter values were artificially supplied to them. The encouraging results suggest that projected clustering can be a practical tool for various kinds of real applications.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:16 ,  Issue: 11 )