By Topic

Wavelet neural network approach for fault diagnosis of analogue circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
He, Y. ; Coll. Of Electr. & Inf. Eng., Hunan Univ., Changsha, China ; Tan, Y. ; Sun, Y.

A systematic method for fault diagnosis of analogue circuits based on the combination of neural networks and wavelet transforms is presented. Using wavelet decomposition as a tool for removing noise from the sampled signals, optimal feature information is extracted by wavelet noise removal, multi-resolution decomposition, PCA (principal component analysis) and data normalisation. The features are applied to the proposed wavelet neural network and the fault patterns are classified. Diagnosis principles and procedures are described. The reliability of the method and comparison with other methods are shown by two active filter examples.

Published in:

Circuits, Devices and Systems, IEE Proceedings  (Volume:151 ,  Issue: 4 )