By Topic

The ANN of UMCP forecast based on developed ICA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zheng Hua ; North China Inst. of Electr. Power, Beijing, China ; Zhang Lizi ; Xie Li ; Shen Jingna

This paper focuses on the relatively new application of independent component analysis (ICA) on the forecast problem of unconstrained market clearing price (UMCP) in the day-ahead spot market. The property extraction of UMCP and UMCP forecast model based improved ICA are presented in order to not only decrease the feature dimensions and the complexity of model, but also enhance the model practicability and forecast accuracy. Firstly, the whitened factor data as mixed input signals is extracted by improved fixed-point algorithm. Then artificial neural network (ANN) forecast model is built on the basis of the extracted feature samples and used to forecast UMCP. The UMCP data of America California during 1998 and 1999 is also applied to the algorithm of this paper, whose result has verified the validity of the model.

Published in:

Electric Utility Deregulation, Restructuring and Power Technologies, 2004. (DRPT 2004). Proceedings of the 2004 IEEE International Conference on  (Volume:2 )

Date of Conference:

5-8 April 2004