Cart (Loading....) | Create Account
Close category search window
 

Performance evaluation of constraint-based path selection algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kuipers, F. ; Delft Univ. of Technol., Netherlands ; Korkmaz, T. ; Krunz, M. ; Van Mieghem, P.

Constraint-based path selection is an invaluable part of a full-fledged quality of service (QoS) architecture. Internet service providers want to be able to select paths for QoS flows that optimize network utilization and satisfy user requirements and as such increase revenues. Unfortunately, finding a path subject to multiple constraints is known to be an NP-complete problem. Hence, accurate constraint-based path selection algorithms with a fast running time are scarce. Numerous heuristics and a few exact algorithms have been proposed. In this article we compare most of these algorithms. We focus on the restricted shortest path algorithms and multi-constrained path algorithms. The performance evaluation of these two classes of algorithms is presented based on complexity analysis and simulation results and may shed some light on the difficult task of selecting the proper algorithm for a QoS-capable network.

Published in:

Network, IEEE  (Volume:18 ,  Issue: 5 )

Date of Publication:

Sept.-Oct. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.