By Topic

Angle estimation for two unresolved targets with monopulse radar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhen Wang ; Maryland Univ., MD, USA ; Sinha, A. ; Willett, P. ; Bar-Shalom, Y.

Most present-day radar systems use monopulse techniques to extract angular measurements of sunbeam accuracy. The familiar "monopulse ratio" is a very effective means to derive the angle of a single target within a radar beam. For the simultaneous estimation of the angles of two closely-spaced targets, a modification on the monopulse ratio was derived in (Blair and Pearce, 2001), while (Sinha et al., 2002) presented a maximum likelihood (ML) technique via numerical search. In this paper it is shown that the ML solution can in fact be found explicitly, and the numerical search of ((Sinha et al., 2002) is unnecessary. However, the ML solution requires the signal to noise ratio (SNR) for each target to be known, and hence we generalize it so it requires only the relative SNR. Several versions of expectation maximization (EM) joint angle estimators are also derived, these differing in the degree to which prior information on SNR and on beam pattern are assumed. The performances of the different direction-of-arrival (DOA) estimators for unresolved targets are studied via Monte Carlo, and it is found that most have similar performance: this is remarkable since the use of prior information (SNR, relative SNR, beam pattern) varies widely between them. There is, however, considerable performance variability as a function of the two targets' off-boresight angles. A simple combined technique that fuses the results from different approaches is thus proposed, and it performs well uniformly.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:40 ,  Issue: 3 )