Cart (Loading....) | Create Account
Close category search window
 

Effect of imperfect channel estimation on transmit diversity in CDMA systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiangyang Wang ; Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, China ; Jiangzhou Wang

In this paper, the effect of imperfect channel estimation on the transmit diversity based on space-time block coding for the downlink of a direct-sequence code-division multiple-access system is studied. Two transmit antenna and one receiving antennas are employed. However, the results of this paper can be extended to the system with more receiving antennas. Each channel is modeled as frequency-selective Rayleigh fading and the pair of channels corresponding to two transmit antennas are mutually independent. Both spatial diversity gain and multipath diversity gain are obtained in the system. The system performance is evaluated in terms of bit-error rate under the perfect and imperfect channel estimation. A pilot-assisted channel-estimation scheme with one common spreading code sequence is exploited. It is shown that the inaccurate channel estimates suffering from multiple access and multipath interference significantly degrade the system performance and can be effectively improved by use of a simple low-pass filter. The investigation of the power ratio of pilot to data channels illustrates that the base station should dynamically adjust the transmit power of the pilot channel according to the varying system configurations in order to achieve the best performance.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:53 ,  Issue: 5 )

Date of Publication:

Sept. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.