Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Blind equalization of frequency-selective channels by sequential importance sampling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Miguez, J. ; Departamento de Electronica e Sistemas, Univ. da Coruna, A Coruna, Spain ; Djurić, P.M.

This paper introduces a novel blind equalization algorithm for frequency-selective channels based on a Bayesian formulation of the problem and the sequential importance sampling (SIS) technique. SIS methods rely on building a Monte Carlo (MC) representation of the probability distribution of interest that consists of a set of samples (usually called particles) and associated weights computed recursively in time. We elaborate on this principle to derive blind sequential algorithms that perform maximum a posteriori (MAP) symbol detection without explicit estimation of the channel parameters. In particular, we start with a basic algorithm that only requires the a priori knowledge of the model order of the channel, but we subsequently relax this assumption and investigate novel procedures to handle model order uncertainty as well. The bit error rate (BER) performance of the proposed Bayesian equalizers is evaluated and compared with that of other equalizers through computer simulations.

Published in:

Signal Processing, IEEE Transactions on  (Volume:52 ,  Issue: 10 )