By Topic

Control of state transitions in an in silico model of epilepsy using small perturbations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chiu, A.W.L. ; Edward S. Rogers Sr. Dept. of Electr. & Comput. Eng., Univ. of Toronto, Ont., Canada ; Bardakjian, B.L.

We propose the use of artificial neural networks in an in silica epilepsy model of biological neural networks: 1) to predict the onset of state transitions from higher complexities, possibly chaotic to lower complexity possibly rhythmic activities; and 2) to restore the original higher complexity activity. A coupled nonlinear oscillators model (Bardakjian and Diamant, 1994) was used to represent the spontaneous seizure-like oscillations of CA3 hippocampal neurons (Bardakjian and Aschebrenner-Scheibe, 1995) to illustrate the prediction and control schemes of these state transition onsets. Our prediction scheme consists of a recurrent neural network having Gaussian nonlinearities. When the onset of lower complexity activity is predicted in the in silica model, then our control scheme consists of applying a small perturbation to a system variable (i.e., the transmembrane voltage) when it is sufficiently close to the unstable higher complexity manifold. The system state can be restored back to its higher complexity mode utilizing the forces of the system's vector field.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:51 ,  Issue: 10 )