By Topic

Computerized tongue diagnosis based on Bayesian networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bo Pang ; Dept. of Comput. Sci. & Eng., Harbin Inst. of Technol., China ; Zhang, D. ; Naimin Li ; Kuanquan Wang

Tongue diagnosis is an important diagnostic method in traditional Chinese medicine (TCM). However, due to its qualitative, subjective and experience-based nature, traditional tongue diagnosis has a very limited application in clinical medicine. Moreover, traditional tongue diagnosis is always concerned with the identification of syndromes rather than with the connection between tongue abnormal appearances and diseases. This is not well understood in Western medicine, thus greatly obstruct its wider use in the world. In this paper, we present a novel computerized tongue inspection method aiming to address these problems. First, two kinds of quantitative features, chromatic and textural measures, are extracted from tongue images by using popular digital image processing techniques. Then, Bayesian networks are employed to model the relationship between these quantitative features and diseases. The effectiveness of the method is tested on a group of 455 patients affected by 13 common diseases as well as other 70 healthy volunteers, and the diagnostic results predicted by the previously trained Bayesian network classifiers are reported.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:51 ,  Issue: 10 )