By Topic

Achieving 1/2 log (1+SNR) on the AWGN channel with lattice encoding and decoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
U. Erez ; Dept. of Electr. Eng.-Syst., Tel-Aviv Univ., Ramat-Aviv, Israel ; R. Zamir

We address an open question, regarding whether a lattice code with lattice decoding (as opposed to maximum-likelihood (ML) decoding) can achieve the additive white Gaussian noise (AWGN) channel capacity. We first demonstrate how minimum mean-square error (MMSE) scaling along with dithering (lattice randomization) techniques can transform the power-constrained AWGN channel into a modulo-lattice additive noise channel, whose effective noise is reduced by a factor of √(1+SNR/SNR). For the resulting channel, a uniform input maximizes mutual information, which in the limit of large lattice dimension becomes 1/2 log (1+SNR), i.e., the full capacity of the original power constrained AWGN channel. We then show that capacity may also be achieved using nested lattice codes, the coarse lattice serving for shaping via the modulo-lattice transformation, the fine lattice for channel coding. We show that such pairs exist for any desired nesting ratio, i.e., for any signal-to-noise ratio (SNR). Furthermore, for the modulo-lattice additive noise channel lattice decoding is optimal. Finally, we show that the error exponent of the proposed scheme is lower bounded by the Poltyrev exponent.

Published in:

IEEE Transactions on Information Theory  (Volume:50 ,  Issue: 10 )