By Topic

Speaking of infinity [i.i.d. strings]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Orlitsky, A. ; Dept. of Electr., Univ. of California, La Jolla, CA, USA ; Santhanam, N.P.

We study the redundancy of three approaches to compression of independent and identically distributed (i.i.d.) strings over large, possibly infinite, alphabets: standard compression of the string itself and compression of the string's shape and pattern, which describe its symbols' relative magnitude and precedence, respectively. We determine the rate at which per-symbol standard redundancy increases to infinity as the alphabet size increases, show that the maximum per-symbol shape redundancy is between 0.027 and 1, and compare these to results showing that per-symbol pattern redundancy diminishes to zero for all alphabet sizes. We relate these concepts to ordered and unordered partitions of integers and sets, and use this framework to explore relations between several combinatorial quantities, including the Bell, Fubini, and second-type Stirling numbers.

Published in:

Information Theory, IEEE Transactions on  (Volume:50 ,  Issue: 10 )