Cart (Loading....) | Create Account
Close category search window
 

Measurement of repulsive force of high Tc materials due to Meissner effect and its two dimensional distribution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Ishigaki, H. ; Dept. of Mech. & Electron. Eng., Kinki Univ., Osaka, Japan ; Itoh, M. ; Hida, A. ; Endo, H.
more authors

As a basic study for magnetic bearings using high-Tc . superconductors, evaluations of the materials were conducted. These evaluations included measurements of the repulsive force and lateral restoring force of various kinds of YBCO pellets. Pure air, which was supplied in the process of fabrication, and the presence of Ag in YBCO showed evidence of the effects of increasing the repulsive force. The lateral restoring force which was observed in the lateral displacement of a levitated permanent magnet over YBCO pellets was also affected by pure air and the presence of Ag. A new measuring instrument for magnetic fields was developed by using a highly sensitive force sensor. Because this instrument has the capability of measuring the repulsive force due to the Meissner effect, it was used for evaluating the two-dimensional distribution of superconducting properties. Results show that the pellets had nonuniform superconducting properties. The two-dimensional distribution of residual flux density on the pellets which had been cooled in a magnetic field (field cooling) was also observed by means of the instrument. The mechanism for generating lateral force is discussed in relation to the distribution

Published in:

Magnetics, IEEE Transactions on  (Volume:27 ,  Issue: 2 )

Date of Publication:

Mar 1991

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.