By Topic

Mode-switching in semiconductor lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Furfaro, Luca ; UMR Centre Nat. de la Recherche Scientifique, Univ. de Nice Sophia-Antipolis, Valbonne, France ; Pedaci, F. ; Giudici, M. ; Hachair, X.
more authors

In this paper, we experimentally analyze the modal dynamics of quantum-well semiconductor lasers. Modal switching is the dominant feature for semiconductor lasers that exhibit two or several active longitudinal modes in their time-averaged optical spectrum. In quantum-well lasers, these dynamics involve a periodic switching among several longitudinal modes, which follows a well-determined sequence from the bluest to the reddest mode in the optical spectrum. This feature is radically different from the well-known noise-driven mode-hopping occurring in bulk lasers which involves only two main modes. We analyze the differences in modal dynamics for these two kinds of laser by comparing the modal switching statistics and by studying the effects of noise and modulation in the pumping current.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:40 ,  Issue: 10 )