Cart (Loading....) | Create Account
Close category search window
 

Realization of multigigabit channel equalization and crosstalk cancellation integrated circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)
Pelard, C. ; Quellan Inc., Atlanta, GA, USA ; Gebara, E. ; Kim, A.J. ; Vrazel, M.G.
more authors

In this paper, we present integrated circuit solutions that enable high-speed data transmission over legacy systems such as short reach optics and electrical backplanes. These circuits compensate for the most critical signal impairments, intersymbol interference and crosstalk. The finite impulse response (FIR) filter is the cornerstone of our architecture, and in this study we present 5- and 10-Gsym/s FIR filters in 2-μm GaAs HBTs and 0.18-μm CMOS, respectively. The GaAs FIR filter is used in conjunction with spectrally efficient four-level pulse-amplitude modulation to demonstrate 10-Gb/s data throughput over 150 m of 500 MHz·km multimode fiber. The same filter is also used to demonstrate equalization and crosstalk cancellation at 5 Gb/s on legacy backplane. The crosstalk canceller improves the bit error rate by five orders of magnitude. Furthermore, our CMOS FIR filter is tested and demonstrates backplane channel equalization at 10 Gb/s. Finally, building blocks for crosstalk cancellation at 10 Gb/s are implemented in a 0.18-μm CMOS process. These circuits will enable 10-Gb/s data rates on legacy systems.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:39 ,  Issue: 10 )

Date of Publication:

Oct. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.