Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A circuit-compatible model of ballistic carbon nanotube field-effect transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Raychowdhury, A. ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Mukhopadhyay, S. ; Roy, K.

Carbon nanotube field-effect transistors (CNFETs) are being extensively studied as possible successors to CMOS. Novel device structures have been fabricated and device simulators have been developed to estimate their performance in a sub-10-nm transistor era. This paper presents a novel method of circuit-compatible modeling of single-walled semiconducting CNFETs in their ultimate performance limit. For the first time, both the I-V and the C-V characteristics of the device have been efficiently modeled for circuit simulations. The model so developed has been used to simulate arithmetic and logic blocks using HSPICE.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:23 ,  Issue: 10 )