Cart (Loading....) | Create Account
Close category search window

Linewidth study of InAs-InGaAs quantum dot distributed feedback lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Su, H. ; Center for High Technol. Mater., Univ. of New Mexico, Albuquerque, NM, USA ; Zhang, L. ; Wang, R. ; Newell, T.C.
more authors

The linewidth of laterally loss-coupled distributed feedback (DFB) lasers based on InAs quantum dots (QDs) embedded in an InGaAs quantum well (QW) is investigated. Narrow linewidth operation of QD devices is demonstrated. A linewidth-power product less than 1.2 MHz · mW is achieved in a device of 300-μm cavity length for an output power up to 2 mW. Depending on the gain offset of the DFB modes from the QD ground state gain peak, linewidth rebroadening or a floor is observed at a cavity photon density of about 1.2-2.4×1015 cm-3, which is much lower than in QW lasers. This phenomenon is attributed to the enhanced gain compression observed in QDs.

Published in:

Photonics Technology Letters, IEEE  (Volume:16 ,  Issue: 10 )

Date of Publication:

Oct. 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.