By Topic

Evaluation of energy consumption in RC ladder circuits driven by a ramp input

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alioto, M. ; Dipt. di Ingegneria dell''Informazione, Univ. di Siena, Italy ; Palumbo, G. ; Poli, M.

In this paper, the energy consumption of RC ladder networks, which can represent chains of transmission gate or long wire interconnections, is modeled. Their energy dependence on the input rise time is analyzed by assuming a ramp input waveform. Since the analysis can be carried out in a straightforward manner only for very simple RC ladder networks, the exact analysis is first limited to asymptotic values of the input rise time T (i.e., for T/spl rarr/0 and T/spl rarr//spl infin/). Successively, the energy expression is extended to arbitrary values of the input rise time by introducing a suitable equivalent first-order RC circuit, whose resistance and capacitance are simply related to the resistances and capacitances of the original network. The energy expression found is useful for pencil-and-paper evaluation and affords an intuitive understanding of the network dissipation, since each term has an evident physical meaning. By comparison with SPICE simulations, the energy expression proposed is showed to be accurate enough for modeling purposes.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:12 ,  Issue: 10 )