By Topic

Closed-form design of all-pass fractional delay filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Soo-Chang Pei ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Peng-Hua Wang

In this letter, we propose a novel all-pass (AP) fractional delay filter whose denominator polynomial is obtained by truncating the power series of a certain function. This function is derived from the frequency response of the denominator whose magnitude response is related to the desired phase response through the Hilbert transform since the denominator of a stable AP filter is of minimum phase. The target function and corresponding power series are calculated analytically and expressed in closed form. The closed-form expressions facilitate the analysis of stability. According to the properties for the coefficients of the denominator polynomial, we show that the proposed AP filter is stable for positive delay. Numerical examples indicate that the phase delays of the proposed filters are flat around DC.

Published in:

Signal Processing Letters, IEEE  (Volume:11 ,  Issue: 10 )